107 research outputs found

    Altered Behaviour, Dopamine and Norepinephrine Regulation in Stressed Mice Heterozygous in TPH2 Gene

    Full text link
    Gene-environment interaction (GxE) determines the vulnerability of an individual to a spectrum of stress-related neuropsychiatric disorders. Increased impulsivity, excessive aggression, and other behavioural characteristics are associated with variants within the tryptophan hydroxylase-2 (Tph2) gene, a key enzyme in brain serotonin synthesis. This phenotype is recapitulated in naĂŻve mice with complete, but not with partial Tph2 inactivation. Tph2 haploinsufficiency in animals reflects allelic variation of Tph2 facilitating the elucidation of respective GxE mechanisms. Recently, we showed excessive aggression and altered serotonin brain metabolism in heterozygous Tph2-deficient male mice (Tph2+/−) after predator stress exposure. Here, we sought to extend these studies by investigating aggressive and anxiety-like behaviours, sociability, and the brain metabolism of dopamine and noradrenaline. Separately, Tph2+/− mice were examined for exploration activity in a novel environment and for the potentiation of helplessness in the modified swim test (ModFST). Predation stress procedure increased measures of aggression, dominancy, and suppressed sociability in Tph2+/− mice, which was the opposite of that observed in control mice. Anxiety-like behaviour was unaltered in the mutants and elevated in controls. Tph2+/− mice exposed to environmental novelty or to the ModFST exhibited increased novelty exploration and no increase in floating behaviour compared to controls, which is suggestive of resilience to stress and despair. High-performance liquid chromatography (HPLC) revealed significant genotype-dependent differences in the metabolism of dopamine, and norepinephrine within the brain tissue. In conclusion, environmentally challenged Tph2+/− mice exhibit behaviours that resemble the behaviour of non-stressed null mutants, which reveals how GxE interaction studies can unmask latent genetically determined predispositions. © 2020 The Authors.The authors' work reported here was supported by Deutsche Forschungsgemeinschaft (DFG:CRC TRR58A1/A5), DAAD (to ES), the European Union's Seventh Framework Programme (FP7/2007–2013) under Grant No.602805 (Aggressotype) and the Horizon 2020 Research and Innovation Programme under Grant No.728018 (Eat2beNICE) (to KPL and TS) and the President's program of PhD Exchange of RF-2017 (to TS and DA). We appreciate the valuable technical help of Natalia Bazhenova, Drs. Alexander Trofimov and Natalia Markova with this project

    Search for supersymmetry with a dominant R-parity violating LQDbar couplings in e+e- collisions at centre-of-mass energies of 130GeV to 172 GeV

    Full text link
    A search for pair-production of supersymmetric particles under the assumption that R-parity is violated via a dominant LQDbar coupling has been performed using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV. The observed candidate events in the data are in agreement with the Standard Model expectation. This result is translated into lower limits on the masses of charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, for m_0=500 GeV/c^2 and tan(beta)=sqrt(2) charginos with masses smaller than 81 GeV/c^2 and neutralinos with masses smaller than 29 GeV/c^2 are excluded at the 95% confidence level for any generation structure of the LQDbar coupling.Comment: 32 pages, 30 figure

    Measurement of the W mass in e+e−e^+e^- collisions at production threshold

    Get PDF
    In June 1996, the LEP centre-of-mass energy was raised to 161 GeV. Pair production of W bosons in e+e- collisions was observed for the first time by the LEP experiments. An integrated luminosity of 11 pb-1 was recorded in the ALEPH detector, in which WW candidate events were observed. In 6 events both Ws decay leptonically. In 16 events, one W decays leptonically, the other into hadrons. In the channel where both Ws decay into hadrons, a signal was separated from the large background by means of several multi-variate analyses. The W pair cross-section is measured to be sigma_WW = 4.23 +-0.73 (stat.) +- 0.19 (syst.) pb From this cross-section, the W mass is derived within the framework of the Standard Model: MW = 80.14 +- 0.34 (stat.) +- 0.09 (syst.) +- 0.03 (LEP~energy) GeV/c2

    Measurement of the tau lepton lifetime

    Get PDF
    The mean lifetime of the tau lepton is measured in a sample of 25700 tau pairs collected in 1992 with the ALEPH detector at LEP. A new analysis of the 1-1 topology events is introduced. In this analysis, the dependence of the impact parameter sum distribution on the daughter track momenta is taken into account, yielding improved precision compared to other impact parameter sum methods. Three other analyses of the one- and three-prong tau decays are updated with increased statistics. The measured lifetime is 293.5+/-3.1+/-1.7 fs. Including previous (1989-1991) ALEPH measurements, the combined tau lifetime is 293.7+/-2.7+/-1.6 fs

    Search for Bs0B^{0}_{s} oscillations using inclusive lepton events

    Get PDF
    A search for Bs oscillations is performed using a sample of semileptonic b-hadron decays collected by the ALEPH experiment during 1991-1995. Compared to previous inclusive lepton analyses, the prop er time resolution and b-flavour mistag rate are significantly improved. Additional sensitivity to Bs mixing is obtained by identifying subsamples of events having a Bs purity which is higher than the average for the whole data sample. Unbinned maximum likelihood amplitude fits are performed to derive a lower limit of Dms>9.5 ps-1 at 95% CL. Combining with the ALEPH Ds based analyses yields Dms>9.6 ps-1 at 95% CL.A search for B0s oscillations is performed using a sample of semileptonic b-hadron decays collected by the ALEPH experiment during 1991-1995. Compared to previous inclusive lepton analyses, the proper time resolution and b-flavour mistag rate are significantly improved. Additional sensitivity to B0s mixing is obtained by identifying subsamples of events having a B0s purity which is higher than the average for the whole data sample. Unbinned maximum likelihood amplitude fits are performed to derive a lower limit of Deltam_s>9.5ps^-1 at 95% CL. Combining with the ALEPH D-s based analyses yields Deltam_s>9.6ps^-1 at 95% CL

    First measurement of the BSB_S meson mass

    Get PDF
    If simplified, every information retrieval problem can be solved when the information need implied by its expression has been identified. We are interested in the criteria used in realising a good information retrieval problem expression. We have listed these criteria through some principles and maxims which first characterized the communication between two persons are applied. We choose to use the gricean maxims because they are the most favoured for this type of situation. Secondly, we have tried to identify some others principles that can be used to realise a good information retrieval problem expression. The principles by Grice can not resolve all forms of error associated with this particular form of communication. In our work, we defined three other principles namely: adhesion principle, reformulation principle, memorization principle. We give some examples of situations where the principles we have formulated are not applicable and the consequences. We present the possible applications of our new model: MIRABEL, which can help in the description of information retrieval problem from. It also compels its user to use essential good expression principle implicitly

    A measurement of AFBbA^b_{FB} in lifetime tagged heavy flavour Z decays

    Get PDF

    Measurement of the W mass by direct reconstruction in e+e−e^+ e^- collisions at 172 GeV

    Get PDF
    The mass of the W boson is obtained from reconstructed invariant mass distributions in W-pair events. The sample of W pairs is selected from 10.65~pb−1^{-1} collected with the ALEPH detector at a mean centre-of-mass energy of 172.09 \GEV. The invariant mass distribution of simulated events are fitted to the experimental distributions and the following W masses are obtained: WW→qq‟qq‟mW=81.30+−0.47(stat.)+−0.11(syst.)GeV/c2WW \to q\overline{q}q\overline{q } m_W = 81.30 +- 0.47(stat.) +- 0.11(syst.) GeV/c^2, WW→lÎœqq‟(l=e,ÎŒ)mW=80.54+−0.47(stat.)+−0.11(syst.)GeV/c2WW \to l\nu q\overline{q}(l=e,\mu) m_W = 80.54 +- 0.47(stat.) +- 0.11(syst.) GeV/c^2, WW→τΜqq‟mW=79.56+−1.08(stat.)+−0.23(syst.)GeV/C62WW \to \tau\nu q\overline{q} m_W = 79.56 +- 1.08(stat.) +- 0.23(syst.) GeV/C62. The statistical errors are the expected errors for Monte Carlo samples of the same integrated luminosity as the data. The combination of these measurements gives: mW=80.80+−0.11(syst.)+−0.03(LEPenergy)GeV/2m_W = 80.80 +- 0.11(syst.) +- 0.03(LEP energy) GeV/^2

    Update of electroweak parameters from Z decays

    Get PDF

    Search for particles with unexpected mass and charge in Z decays

    Get PDF
    • 

    corecore